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OREtNAL PAGE !S 
I N T  HODUCTION M POOR Q U A W  

L a r g e  S p a c e  A n t e n n a s  ( L S A )  p r o p o s e d  f o r  c o m m u n i c a t i o n  a n d  r e m o t e  s e n s i n g  
m i s s i o n s  w i l l  r e q u i r e  accurate dynamic a n a l y s e s  t o  p r e d i c t  s t r u c t u r a l  v i b r a t i o n  
behavior  and t o  assess t h e  need f o r  a c t i v e  v i b r a t i o n  c o n t r o l .  O f  t h e  numerous  
L S A  c o n c e p t s  t h a t  h a v e  b e e n  p r o p o s e d  ( s e e  f o r  example Refs. 1 ,  2 and 3 ) ,  one  
c o n c e p t ,  r e f e r r e d  t o  as t h e  Hoop-Column c o n c e p t ,  has been f a b r i c a t e d  (Ref .  2 ) .  
A 1 5  meter diameter model has  been c o n s t r u c t e d  f o r  deployment ,  e l e c t r o m a g n e t i c  
and s t r u c t u r a l  t e s t i n g .  The model, shown b e l o w ,  was d e s i g n e d  a n d  f a b r i c a t e d  
j o i n t l y  by g o v e r n m e n t  a n d  i n d u s t r y  (Ref .  4). A s  p a r t  o f  t h e  t e s t  program, 
s t a t i c  and dynamic t e s t s  have b e e n  p e r f o r m e d  i n  t h e  L a n g l e y  1 6  Meter Vacuum 
Chamber.  R e s u l t s  f rom t h e s e  t e s t s  and  comparisons w i t h  p r e d i c t e d  s t r u c t u r a l  
behav io r  w i l l  b e  d e s c r i b e d .  

1 5  M E T E R  D I A M E T E R  H O O P - C O L U M N  A N T E N N A  
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OUTLINE

A numberof structural tests and analyses have been performed on the 15
meter antenna model. This paper will eoncentrate on vibration test and analysis
results. As indicated in the outline below, a description of the experimental
and analytical models will be presented first. Second, test and analysis
results will be presented for the antenna mounted on a tripod support.
Vibration results have been divided into three areas: global modeswhich are
dominated by overall column bending and hoop motion; hoop modes which are
dominated by inplane and out-of-plane hoop (ring) bending; and meshmodeswhich
are localized surface meshdistortions. Results from a simplified analytical
model will be presented followed by a description of the antenna vibrations when
supported by a pendulum cable.

Description of:

• 15 meter hoop column antenna

Antenna vibration tests

• Antenna analysis models

• Vibration modeswith tripod support
global, hoop and mesh

• Reduced analytical model

• Global vibration modes
Cable suspension

• Summary
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ANTENNA DEPLOYMENT 

The f i g u r e  below shows the  a n t e n n a  deployment sequence .  F i r s t ,  t he  a n t e n n a  
i s  moun ted  on a t r i p o d  s u p p o r t  i n  a stowed c o n f i g u r a t i o n .  Next ,  t he  column is  
deployed by a motor d r i v e n  c a b l e  system enc losed  i n  t h e  column l o n g e r o n s .  The 
co lumn t e l e s c o p e s  outward s i m u l t a n e o u s l y  from t o p  and bottom. After t h e  column 
is dep loyed ,  t he  hoop is deployed by e i g h t  motors  which a r e  mounted i n  e i g h t  o f  
t h e  t w e n t y - f o u r  hoop j o i n t s .  Synchron iz ing  r o d s  are  used t o  m a i n t a i n  uniform 
deployment of each hoop s e c t i o n .  The f i n a l  deployment s t e p  is the  a c t u a t i o n  o f  
a p r e l o a d  segment a t  t h e  bottom of the  column. T h i s  segment e x t e n d s  outward t o  
p r e t e n s i o n  a l l  of the  cables a n d m e s h ,  t h u s  p r o v i d i n g  a s t a b l e  s t r u c t u r a l  
c o n f i g u r a t i o n .  The an tenna  dep loys  from a volume of  approx ima te ly  1 m by 3 m t o  
a deployed s i z e  o f  15 m i n  diameter by 9.5 m i n  h e i g h t .  The feed and f e e d  mast 
were manually a t tached  a f t e r  the  an tenna  was deployed.  
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ANTENNA EXPERIMENTAL SETUP

The antenna was deployed inside _ vacuum chamber as shown in the schematic

diagram below. The deployment was stopped on several occasions to enable

accelerometers and strain gages to be mounted on the column and hoop. A total

of 58 servo accelerometers were used to measure the acceleration response of the

antenna due to small random and sinusoidal disturbances. In addition,

displacement measuring proximity probes were used to measure static deflections

and surface mesh vibrations. The total mass of the antenna is 400.1 kg (880.5

lbs) with the center of gravity located at I 85 m abpove the hoop. The
rotational irLertias of the antenna are I =I = Ii500 kg-m- (1018001b-s2-in) and

I = 8160 kg- m 2 (72200 ib-s2-in), x y
Z

Pendulum cable

Tripod support_

Vacuum chamber

R

Antenna properties

Overall dimensions:
Diameter = 15 M (500.5 in.)

Height = 12.8 M (504 in. )
Elements

Hoop (graphite)
Column (graphite)
Surface mesh (gold plated

molybdenum wire)

Cables (graphite and quartz)
Feed mast (steel)

Simulated feed weight

Ma ss (weight)
131.8 kg (290. 1 Ibs)

135.8 kg (298.7 Ibs)

10.7 kg (23. 6 Ibs)

2.1 kg (4.7 Ibs)

11.5 kg (2.5.4 Ibs)
108.2 kg (238 Ibs)

Total 400.1 kg (880. 5 Ibs)
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ANTENNA FINITE ELEMENT MODEL: WITHOUT SURFACE

The antenna has been modeled with the Engineering Analysis Language finite

element program described in Ref. 5. The hoop, column and hoop support cables

were modeled first. The model shown below includes the flexibility of the

tripod support. Preliminary vibration tests were performed prior to surface

mesh installation to verify the antenna analytical model without the surface.

These preliminary tests showed the need for modeling the tripod and including

the rotational inertia of the column. The differential stiffness due to

tension/compression loads in the members was included an all analyses. In

addition, gravity loading was modeled to correlate with ground vibration test
r es ul ts.

HOOP

COLUMN

UPPER HOOP

SUPPORT CABLES

LOWER HOOP

SUPPORT CABLES
TRIPOD SUPPORT
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ANTENNAFINITE ELEMENTSURFACEMODEL

ORIGINAL PP,G_ iS
OF POOR QUALRy

The antenna surface consists of four paraboloidal apertures shaped by

pretensioned cables and mesh. Since twenty-four gores are present, the smallest

representative element of the antenna surface is a three gore model as shown in

the upper left of the figure below. Reflective symmetry permits one full

aperture to be modeled as shown in the upper right six gore model. Repeated

application of rotational symmetry yields the full surface model shown in the

bottom figure. (Only mesh elements are shown for clarity.) The surface model

was merged with the hoop and column model shown previously to permit analysis of

the full antenna. The analytical model without the feed and feed mast contained

286 beam elements, 4664 rod elements and 2880 triangular mesh elements. A total

of 2096 grid points and 8816 degrees of freedom were used in the analysis.

//i,_/_\ Upper hoop

_/A\i'_, support cables

'_:,_:.tTJ _,>_',.'

'\_,}\_!_,/,{l control

'_t/ cables

Radial view Top view

_. _

, Reflective symmetry

,,,_bout 45 degrees

z Hoop

Oblique view
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FREQUENCIES OF FIRST FOUR VIBRATION MODES

Test results showed the fundamental frequency of the antenna was 0.077 Hz

when supported on the tripod. This mode was dominated by torsion of the hoop.

As indicated in the table below, the second mode shape occurred at 0.704 Hz and

consisted of hoop rocking and column bending. The number of modes at this

frequency is indicated in parenthesis to be two since this mode shape can occur

in two orthogonal planes. Although fabrication asymmetries usually yield two

distinct frequencies, test results indicated no measurable difference in

frequency when excited in different planes of vibration. The next mode shape

was dominated by hoop inplane translation and column bending. Again two modes

occur at the frequency of 1.76 Hz. The last mode indicated below is

characterized by torsional motion of the lower column at 3.06 Hz. These four

modes were found to be the dominant global modes when supported on the tripod.

Initial analysis results showed significant errors in frequency when compared to

the test data. The properties in the initial analysis were based on fabrication

_awings, which can often lead to overestimates of member stiffnesses by

neglecting the joints used in the assembly process. Thus, static tests of the

assembled antenna were used to measure the effective stiffness of the hoop and

column for refinement of the analytical model.

ANALYTICAL MODE SHAPES

Mode1 Mode2

Mode3 Mode4

ORIGINAL ANALYSIS FREQUENCIES
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Mode

1 O.092

2 (2) 1.60

3 (2) 2.80

4 3.20

Original analysis Test Mode shape

Frequency (HZ)

O.077

0.704

1.76

3.06

Hoop torsion

Hoop rocking/column bending

Hoop inplane/column bending

Lower column trosion



STATIC TESTS FOR ANALYTICAL MODEL REFINEMENT 

S i n c e  component and subassembly tests of j o i n t s  and  o t h e r  a n t e n n a  p a r t s  
c o u l d  n o t  be p e r f o r m e d ,  t h e  e n t i r e  an tenna  was loaded  t o  measure t h e  e f f e c t i v e  
member s t i f f n e s s e s .  The f i g u r e  below i n d i c a t e s  l o c a t i o n s  where p o i n t  l o a d s  were 
a p p l i e d  t o  t h e  an tenna .  Vertical ,  Lor s ion  and r a d i a l  l o a d s  were a p p l i e d  t o  t he  
hoop whereas o n l y  radial  and t o r s i o n a l  l o a d s  were a p p l i e d  t o  t h e  base of t h e  
c o l u m n .  The d e f l e c t i o n  of  the  an tenna  was measured a t  t h e  p o i n t  of l o a d i n g  and 
computed u s i n g  the a n a l y t i c a l  m o d e l .  C o m p a r i s o n s  be tween  t e s t  a n d  a n a l y s i s  
i n d i c a t e d  t h e  a n a l y s i s  o v e r e s t i m a t e d  t h e  s t i f f n e s s  by 17 p e r c e n t  f o r  column 
bending and 10 p e r c e n t  f o r  hoop t o r s i o n .  Mass measurements of t he  a n t e n n a  were 
a l s o  p e r f o r m e d  a n d  u s e d  t o  u p d a t e  t h e  a n a l y t i c a l  model. The a n a l y t i c a l  model 
was mod i f i ed  by a d j u s t i n g  t h e  s t i f f n e s s  of column longe ron  and d i a g o n a l  members 
a n d  by a d j u s t i n g  t h e  s t i f f n e s s  o f  t h e  column t o  t r i p o d  a t t a c h m e n t .  The 
a n a l y t i c a l  model, r e f i n e d  u s i n g  the  s t a t i c  tes t  da ta ,  was t h e n  used t o  recompute 
t h e  f irst  f o u r  v i b r a t i o n  modes of the an tenna .  
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REFINEDANALYTICALMODELRESULTS

The table below lists the analysis and test frequencies after the antenna
model was refined. Good frequency agreement was obtained. This indicates
static test data should be used to refine the analytical models of large space
structures particularly since the accuracy of static data increases as the
flexibility of the structure increases. Also listed in the table are the
measuredfrequencies and damping of the first four modes of the antenna. The
damping is somewhat higher than usually found in spacecraft perhaps due to the
deployable joints and the tripod interface. The damping increases when tested
in ambient air. Unlike panel structures, the antenna shows very small decreases
in frequency when tested in ambient air. This indicates large lattice
structures can be tested in ambient air without significant changes in vibration
frequencies of the global modes.

Mode Refined analysis Test

1

2 (2)

3(2)

4

F(HZ)

0. 077

0. 697

1.73

3.18

Vacuum Ambient air

F(HZ)

O.077

0.704

1.76

3.06

C/CR (%)

1.9

3.8

3.2

0.84

F (HZ) C/CR (%)

O.076 3.8

0.700 4.3

1.75 3.3

3.10 1.3
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HOOP VIBRATION MODES

Although the antenna vibration is dominated by the global modes shown

previously, a number of more localized modes exist. Out-of-plane ring bending

of the hoop produces 12 modes from 6.3 to 10.1 Hz in the analysis. In

addition, another 14 inplane ring bending modes occur from 10.7 to 14.4 Hz. As

shown in the figure below, the modes shapes of the hoop modes involve rotation

of the hoop joints. Since these hoop joints have some unknown effective

rotational stiffness, mode for mode comparisons between test and analysis is

almost impossible. Nevertheless, modeling the joints as being pinned in the

out-of-plane direction and being rigid in the inplane direction, has yielded a

frequency spectrum which agrees quite well with the test data. Some

nonlinearity in the hoop modes has been found when testing at different force

levels. It is felt that a mechanical locking mechanism to secure the joint in

the deployed configuration or a method to completely pin the hoop joints would

be useful in reducing nonlinearities and thus, permit better simulation of

the hoop response.

Out-of-plane bending 12 modes From 6. 3 to I0.1 HZ

...

Typical out-of-plane hoop modes

Inplane bending 14 modes From 10.7 to 14.4 HZ

Typical in-plane hoop modes
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MESH VIBRATION MODES

The analytical model predicts 70 vibration modes dominated by surface mesh

displacements from 4.1 to 6.2 Hz. Shown below are typical mode shapes predicted

by the analysis. Experimentally, these modes have been found to be highly

damped and coupled. Although a frequency spectrum in this range can be found by

testing the antenna, the data has not been successfully reduced into a set of

recognizable mode shapes. The high damping of the knit mesh results in rapid

dissipation of the excitation energy. Since the input energy did not propagate

long distances, it was extremely difficult to produce a standing wave (vibration

mode) in the surface mesh. To insure that membrane theory was adequate to model

the mesh, a 1.22 m square knit mesh model was constructed for vibration testing.

70 modes from 4.1 to 6.2 HZ

Typical mesh modes
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ORGWJAL PAGE B 
O f  POOR QUALW 

1.22 METER SQUARE MESH V I B R A T I O N  MODEL 

The f i g u r e  below shows a 1.22 m square sample of  the g o l d  p l a t e d  molybdenum 
mesh used f o r  t h e  r e f l e c t o r  s u r f a c e  on the  15 m antenna m o d e l .  The model  was 
moun ted  i n  a n  2 .5  m vacuum sphere t o  permit  t e s t i n g  a t  n e a r  vacuum c o n d i t i o n s .  
An e l ec t rodynamic  shaker was attached t o  t he  mesh f o r  e x c i t a t i o n  and a p r o x i m i t y  
s e n s o r  m o u n t e d  o n  a s u r v e y  s y s t e m  was u s e d  t o  m e a s u r e  t h e  r e s p o n s e  
d i s p l a c e m e n t s .  The mesh was p r e t e n s i o n e d  uniformly by lead w e i g h t s  wh ich  hung  
o v e r  c i r c u l a r  r o d s .  Tests  were p e r f o r m e d  a t  two d i f f e r e n t  t e n s i o n  l e v e l s  t o  
s t u d y  t e n s i o n  e f fec ts ;  3.01 N/m (0.0172 l b s l i n . )  and 6.02 N/m (0.0844 l b s / $ n . ) .  
The  mesh d e n s i t y  was m e a s u r e d  t o  b e  0.06284 g/m2 (8 .938 X IO- l b m / i n  ) .  A 
d i f f e r e n t i a l  e q u a t i o n  f o r  s o l u t i o n  o f  a two  d i m e n s i o n a l  membrane was u s e d  t o  
p r e d i c t  t h e  v i b r a t i o n  f r e q u e n c i e s .  
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1.22 METER SQUARE MESH DYNAMICS

The table below lists frequencies and damping for selected vibration modes

of the 1.22 m surface mesh model. The analytical frequencies are high perhaps

due to the manner in which the lead weights were used to pretension the mesh.

Since the lead weights hung over a circular rod, friction could reduce the

amount of tension that is applied to the mesh. Nevertheless, the frequencies

increase by the square root of the tension increase which indicates that the

mesh can be modeled with membrane theory for prediction of out-of-plane

vibration modes. The damping of the mesh is quite high, for example, 6.9

percent of critical damping in the first mode. Ambient air significantly

increases the damping of the mesh. The frequencies of vibration are slightly

lower at near vacuum pressure than at ambient air pressure. This is unusual

since ambient air generally has an apparent mass effect and thus lowers

vibration frequencies. One additional point to be made is that the damping

tends to decrease as the tension level increases.

Analysis Test

Nx = Ny = 3.01 N/M Vacuum Ambient air
(0. 0172 Ibs/in)

Mode F (HZ) F (HZ) C/CR (%) F (HZ) C/CR (%)

1

2 (2)

3

5 (2)

6.48

I0.24

12.95

16.51

5.80

9.21

13.04

14.96

6.9

4.0

3.3

3.1

5.98

9.35

13.22

15.17

NX = Ny = 6. 02 N/M
(0. 0344 Ibs/in)

1

2 (2)

3

5 (2)

9.16

14.48

18.31

23.35

8.26

12.89

16.64

20.93

5.0

4.3

3.1

2.3

8.43

12.96

16.79

21.13

9.2

6.9

4.2

4.2

7.1

4.7

3.7

3.3
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SIMPLIFIED ANALYTICAL MODELS

The dominant modes contributing to antenna vibrations are the global modes

described previously. Since these modes are not significantly affected by the

surface mesh, a reduced analytical model was developed. The reduced model used

a very crude representation of the surface mesh which resulted in only 996

degrees of freedom in the analysis. This model predicted the first four global

modes quite accurately as shown in the table below. The mode shapes, also shown

below, are similar to those shown previously. The column has been reducea using

continuum beam theory (Ref. 6) which makes mode shape plots more difficult to

visualize. The good accuracy obtained with the reduced model indicates that

relatively crude representations of the surface are adequate to predict the

global modes of the antenna.

_,,._ / : _I_¸

Mode 1 Mode 2

)'j:.

Mode 3 Mode 4

Mode

I

2 (2)

3 (2)

4

Full model Reduced model

Frequency (HZ)

O.077

O. 697

1.73

3.20

O.077

O. 697

1.84
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ANTENNA MODES WITH CABLE SUSPENSION AND FEED MAST

The reduced model was used to predict the global modes of the antenna when

supported by a pendulum cable. A simulated feed weight and feed mast were also

attached. The analytical model predicted the cable suspended frequencies shown

below. A comparison of the test and analysis results show good agreement.

Except for the first two pendulum modes, the cable suspended modes closely agree

with the frequencies predicted for free-free boundary conditions. The

fundamental flexible antenna frequency increases to 1.47 Hz for cable suspended

or free-free vibrations. The test data which was acquired in ambient air shows

the damping to be near I percent of critical for most modes. Antenna support

systems can greatly influence the frequency and mode shapes of the global

antenna modes. The hoop and mesh modes are not strongly affected by column

support systems thus the hoop and mesh results shown previously are still valid

when the antenna is cable suspended or free-free.

Mode 3 Mode 4
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Mode Analysis (reduced model) Test Mode shape

F(HZ) F (HZ) C/CR (%)

l(2) O.132

2(2) O.283

3(2) 1.47

4 2.20

5(2) 4.31

6 5.40

O.138

0.284

I.47

2.19

4.09

5.42

3.1

1.2

1.3

I.I

l.g

O.94

First pendulum

Second pendulum

Hoop rock i ng/col umn
and feed mast bending

Column/hoop torsion

Second column and feed
mast bending

Feedmast torsion



ORIGINAL PAGE fs 
OF POOR QUALITY 

PROPOSED COFS 11 A N T E N N A  FLIGHT EXPERIMENT 

The 15 meter hoop-column a n t e n n a  h a s  been  t e s t e d  f o r  d e p l o y m e n t ,  
e lec t romagnet ic  performance and s t ructural  behavior. Q u a s i - s t a t i c  shape con t ro l  
(Ref. 7)  has shown t h e  antenna is amenable t o  a c t i v e  s u r f a c e  s h a p i n g .  Due t o  
i t s  demonstrated performance and i n t e r e s t i n g  v ib ra t ion  behavior ,  the  antenna is  
a candida te  f o r  f l i g h t  experiments i n  t h e  Control of F l e x i b l e  S t r u c t u r e s  (COFS) 
program.  The  a n t e n n a  s t r u c t u r a l  b e h a v i o r  has been c h a r a c t e r i z e d  w i t h  two 
suspension systems,  however ,  t h e  COFS 11 exper iment  i l l u s t r a t e d  below w i l l  
r e q u i r e  f u r t h e r  s t r u c t u r a l  a n a l y s i s  and t e s t i n g .  For example, more r e sea rch  is 
needed t o  fully understand t h e  i n t e r a c t i o n  between s u r f a c e  s h a p e  c o n t r o l  and 
g loba l  antenna v i b r a t i o n s .  
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SUMMARY

A 15 meter model of the hoop-coltmm antenna concept has been vibration

tested for model characterization and analytical model verification. Linear

finite element analysis predicted the global vibration frequencies accurately,

however, good agreement between analysis and test data was obtained only after

the analytical model was refined using static test data. As structures become

more flexible, structural properties determined from static data become more

accurate and should be used to update analytical models. Global vibration modes

are not significantly affected by the surface mesh which permits simplified

analytical models to be used for prediction of global behavior. These reduced

models are believed sufficient for preliminary design and controls simulations

where only global behavior is desired. The mesh modes were highly damped due to
the knit mesh used for the reflector surface. These modes were also highly

coupled and very difficult to measure in the laboratory. The inability to fully

characterize the antenna mesh modes in the laboratory indicates robust methods

for active surface vibration suppression will be needed. Fortunately, the

surface mesh exhibits high passive damping which should be beneficial to active

control systems.

• Static tests are needed to refine analytical models

• Mesh modes are highly damped (coupled)

• Reduced analytical models are adequate to predict global
vibration modes

The effect of cable and mesh modes on active control

systems needs further investigation
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